The International Journal of Robotics Research

نویسندگان

  • Robert J. Webster
  • Jin Seob Kim
  • Noah J. Cowan
  • Gregory S. Chirikjian
  • Allison M. Okamura
  • Robert J. Webster
چکیده

As a flexible needle with a bevel tip is pushed through soft tissue, the asymmetry of the tip causes the needle to bend. We propose that, by using nonholonomic kinematics, control, and path planning, an appropriately designed needle can be steered through tissue to reach a specified 3D target. Such steering capability could enhance targeting accuracy and may improve outcomes for percutaneous therapies, facilitate research on therapy effectiveness, and eventually enable new minimally invasive techniques. In this paper, we consider a first step toward active needle steering: design and experimental validation of a nonholonomic model for steering flexible needles with bevel tips. The model generalizes the standard three degree-of-freedom (DOF) nonholonomic unicycle and bicycle models to 6 DOF using Lie group theory. Model parameters are fit using experimental data, acquired via a robotic device designed for the specific purpose of inserting and steering a flexible needle. The experiments quantitatively validate the bevel-tip needle steering model, enabling future research in flexible needle path planning, control, and simulation. KEY WORDS—nonholonomic system, steerable needle, surgical robot, medical robot, path planning, Lie group, Lie algebra

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual Space Control of a Deployable Cable Driven Robot: Wave Based Approach

Known for their lower costs and numerous applications, cable robots are an attractive research field in robotic community. However, considering the fact that they require an accurate installation procedure and calibration routine, they have not yet found their true place in real-world applications. This paper aims to propose a new controller strategy that requires no meticulous calibration and ...

متن کامل

Neural Network Sensitivity to Inputs and Weights and its Application to Functional Identification of Robotics Manipulators

Neural networks are applied to the system identification problems using adaptive algorithms for either parameter or functional estimation of dynamic systems. In this paper the neural networks' sensitivity to input values and connections' weights, is studied. The Reduction-Sigmoid-Amplification (RSA) neurons are introduced and four different models of neural network architecture are proposed and...

متن کامل

Planar Molecular Dynamics Simulation of Au Clusters in Pushing Process

Based on the fact the manipulation of fine nanoclusters calls for more precise modeling, the aim of this paper is to conduct an atomistic investigation for interaction analysis of particle-substrate system for pushing and positioning purposes. In the present research, 2D molecular dynamics simulations have been used to investigate such behaviors. Performing the planar simulations can provide a ...

متن کامل

Robust image fusion using a statistical signal processing approach

Robust Mapping and Localization in Indoor Environments Using Sonar Data all 6 versions » JD Tardos, J Neira, PM Newman, JJ Leonard The International Journal of Robotics Research, 2002 ijr.sagepub.com The International Journal of Robotics Research Juan D Tardos, Jose Neira, Paul M Newman and John J Leonard Robust Mapping and Localization in Indoor Environments Using Sonar Data ... The Internatio...

متن کامل

Kinematic and Gait Analysis Implementation of an Experimental Radially Symmetric Six-Legged Walking Robot

As a robot could be stable statically standing on three or more legs, a six legged walking robot can be highly flexible in movements and perform different missions without dealing with serious kinematic and dynamic problems. An experimental six legged walking robot with 18 degrees of freedom is studied and built in this paper. The kinematic and gait analysis formulations are demonstrated by an e...

متن کامل

3D Scene and Object Classification Based on Information Complexity of Depth Data

In this paper the problem of 3D scene and object classification from depth data is addressed. In contrast to high-dimensional feature-based representation, the depth data is described in a low dimensional space. In order to remedy the curse of dimensionality problem, the depth data is described by a sparse model over a learned dictionary. Exploiting the algorithmic information theory, a new def...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006